THERMAL STUDY OF CHROMIUM AND MOLYBDENUM COMPLEXES WITH SOME NITROGEN AND NITROGEN–OXYGEN DONORS LIGANDS

A. A. Soliman^{1,2*}, S. M. El-Medani² and O. A. M. Ali³

¹Department of Chemistry, Faculty of Science, UAEU, AlAin, P.O. Box 17551, United Arab Emirates ²Department of Chemistry, Faculty of Science, Cairo University (Fayoum), Fayoum, Egypt

³Chemistry Department, University College for Girls, Ain Shams University, Cairo, Egypt

The complexes of chromium and molybdenum with salicylidene-2-aminophenol (shaH₂), salicylidene-2-aminoanisole (salanH₂), salicylidene-2-aminoaniline (salphenH₂) and biquinoline (biq) were studied using the thermogravimetric techniques. The thermal decomposition of all complexes was found to be first order reaction and the thermodynamic parameters corresponding to the different decomposition steps were reported. Molybdenum complexes were found to be more thermally stable and the order of stability was [Mo(CO)4(biq)]>[MoO(salphen)]>[MoO2(salphenH)2]>[MoO4(salan)2]>[MoO(sha)]. Similar trend was found for chromium complexes where $[Cr(CO)_4(biq)] > [Cr(CO)_2(salphen)] > [CrO_2(CO)_2(shH_2)] > [CrO_2(CO)_2(salan)_2].$

Keywords: chromium, kinetics of thermal decomposition, molybdenum, Schiff bases, thermogravimetric studies

Introduction

In the use of transition metal carbonyls as reactive species in homogeneous catalytic reactions such as hydrogenation, hydroformylation and carbonylation, carbon monoxide served simply as a ligand providing the complex with the necessary reactivity and/or stability to allow reaction to ensue [1]. On the other hand, the presence of ligands having donor atom sets like N2O2 and N4 have been found to be useful catalysts especially for epoxidation reactions [2]. In the same aspect a large number of Schiff bases and their complexes have been studied for their interesting and important properties, e.g. their ability to reversibly bind oxygen [3], catalytic activity in the hydrogenation of olefins [4], transfer of an amino group [5], photochromic properties [6], complexing ability towards some toxic metals [7]. In previous work the preparation and the structures of chromium and molybdenum with salicylidene-2-aminophenol (shaH₂), salicylidene-2-aminoanisole (salanH₂), salicylidene-2-aminoaniline (salphenH₂) and biquinoline (biq) were reported [8–11]. In this article we throw more light on the thermal stability of these complexes and report the thermodynamic parameters of the different decomposition steps of the complexes.

Experimental

Chromium and molybdenum complexes with N-salicylidene-2-hydroxyaniline (shaH₂), N-salicyli-

N-salicylidene-2dene-2-aminoanisole (salan H_2), aminoaniline (salphenH₂) and biquinoline (biq) were prepared and their structures were reported [8-11]. The molecular formulae were proved as Schemes 1-4.

> $[CrO_2(CO)_2(shaH_2)], [MoO(sha)],$ $[Cr_2O_2(CO)_2(salan)_2], [Mo_2O_4(salan)_2],$ [Cr(CO)₂(salphen)], [MoO(CO)(salphen], $[MoO_2(salphenH)_2]$, $[Cr(CO)_4(big)]$ and $[Mo(CO)_4(biq)]$

Measurements of the thermogravimetric analysis (TG and DTG) were carried out under nitrogen atmosphere with a heating rate of 10 K min⁻¹ using a Shimadzu DT-50 thermal analyzer.

Kinetics of the decomposition of the complexes

Determination of reaction order of decomposition

The Horowitz and Metzger [12] equation $C_s = n^{1/1-n}$ where *n* is the order of the reaction and C_s is the mass

Author for correspondence: ahmed.soliman@uaeu.ac.ae, ahmedsoliman2@hotmail.com

fraction of the substance present at the DTG peak temperature; T_s , is given by:

$$C_{\rm s} = (W_{\rm s} - W_{\rm f})(W_0 - W_{\rm f}) \tag{1}$$

and was used for the determination of the values of the reaction order. Here W_s stands for the mass remaining at a given temperature T_s , i.e. the DTG peak temperature, W_0 and W_f are the initial and final masses of the substance, respectively.

Integral method using the Coats-Redfern equation

For a first order process the Coats–Redfern equation [13] may be written in the form:

$$\log\left[\frac{\log(W_{\rm f} / W_{\rm r})}{T^2}\right] =$$

$$= \log\left[\frac{AR}{\theta E^*} \left(1 - \frac{2RT}{E^*}\right)\right] - \frac{E^*}{2303RT}$$
(2)

where W_f is the mass loss at the completion of the reaction, W is the mass loss up to temperature T; $(W_r=W_f-W)$, R is the gas constant, E^* is the activation energy in J mol⁻¹, θ is the heating rate. Since $1-2RT/E^* \cong 1$, a plot of the left hand side of Eq. (2) vs. 1/T was drawn which gave straight lines where E^* and A (Arrhenius constant) were calculated from the slope and the intercept, respectively.

Approximation method using Horowitz–Metzger equation

For the first order kinetic process, the Horowitz– Metzger equation [12, 14] may be written in the form:

$$\log\left(\frac{W_{\infty}}{W_{\rm r}}\right) = \frac{\theta E^*}{2303RT_{\rm s}^2} - \log 2.303 \tag{3}$$

where T_s =DTG peak temperature and θ =T- T_s . A plot of log[log W_{∞}/W_r] vs. θ will give a straight line and E^* can be calculated from the slope. The pre-exponential factor C was calculated from the following equation [12, 13]:

$$C = (\theta E^* / RT_s^2) \exp(E^* / RT_s)$$
(4)

The activation entropy ΔS^* , the activation enthalpy ΔH^* and the free energy of activation ΔG^* were calculated using the following equations:

$$\Delta S^* = 2.303 \left(\log \frac{Ah}{kT} \right) R \tag{5}$$

$$\Delta H^* = E^* - RT \tag{6}$$

$$\Delta G^* = \Delta H^* - T_s \Delta S^* \tag{7}$$

where *k* and *h* are the Boltzman and Planck constants, respectively.

Results and discussion

The thermal studies of the chromium and molybdenum complexes were carried out using the thermogravimetric (TG) and differential thermogravimetric (DTG) techniques. Typical TG and DTG plots for some complexes were represented in Fig. 1. The temperature ranges of decompositions along with the corresponding mass loss of species are given in Tables 1–4.

Fig. 1 TG and DTG plots of biquinoline complexes

[Cr(O)₂(CO)₂(shaH₂)] complex

The TG plot of $[Cr(O)_2(CO)_2(shaH_2)]$ displayed four successive decomposition steps which could be treated as two decomposition steps for simplicity. The first two steps were broad and existed over a wide temperature range; 330–460 K, with a net mass loss of 15.90% which may be due to partial decomposition

[MoO(sha)] complex

[MoO(sha)] complex displayed also two decomposition steps in the temperature range 490–820 K. The first decomposition step occurred in the temperature range 490–700 K with a net mass loss of 28.50% corresponding to the partial decomposition of the Schiff base molecule through the elimination of a C_6H_4O moiety. The second decomposition step occurred in the temperature range 720–820 K with a mass loss of 31.91% and corresponded to the removal of the rest of the Schiff base molecule as C_7H_5N to give finally the residue MoO₂ (39.62%).

[Cr₂O₂(CO)₂(salan)₂] complex

The decomposition of $[CrO_2(CO)_2(salan)_2]$ complexes has been taken place in two steps. The first decomposition step occurred in the temperature range 392–502 K with a net mass loss of 13.39% was assigned to the elimination of two carbonyls (2CO) and the two methyl groups as ethane moiety (C₂H₆). The second decomposition step is a composite one of three successive and unresolved peaks and was found in the temperature range 602–723 K. The mass loss associated with this decomposition step was 63.0% corresponding to the elimination of the rest of the Schiff base molecule with the formation of Cr₂O₃ as metallic residue (23.30%).

[Mo₂O₄(salan)₂] complex

 $[Mo_2O_4(salan)_2]$ decomposed in two separate steps with two resolved and non overlapping DTG peaks. The first decomposition peak was found to take place in the temperature range 670–740 K with a net mass loss of 30.0% which may be assigned for the partial decomposition of the two bulk Schiff base molecules via the equal elimination of two C₆H₄OCH₃ species. The second decomposition step found in the temperature range 1050–1240 K with a net mass loss of 70.0% may be assigned for the volatilization of the rest of the complex including the metallic nuclei.

[Cr(CO)₂(salphen)] complex

Chromium complex with salphen; $[Cr(CO)_2(salphen)]$ decomposed in four successive steps in a wide range of temperature; 340–1273 K. The first two steps with very

Table 1 Thermal analy	'sis data for salicylider	ie-2-aminophenol	(shaH ₂) complexes				
Complex	Molecular mass	$\mathrm{DTG}_{\mathrm{max}}/\mathrm{K}$	Decomposition step/K	Mass loss/%	Molecular mass found (calculated)	Eliminated species	Solid residue/%
[CrO ₂ (CO) ₂ (shaH ₂]	353.25	391 440 589 769	330–410 420–460 544–702 705–806	7.95 7.95 30.33 30.04	28.01 (28.00) 28.01 (28.00) 107.13 (107.00) 106.11 (106.00)	CO CO C ₇ H ₇ O C ₆ H ₄ NO	CrO ₂ (23.74)
[MoO(sha)]	323.08	410 633	490–700 720–820	28.50 31.91	92.10 (92.00) 103.12 (103.00)	C_6H_4O C_7H_5N	MoO ₂ (39.59)
Table 2 Thermal analy	tical data of salicylide	ne-2-aminoanisol	e (salanH2) complexes				
Molecular formula	Molecular mass	DTG _{max} /K I	Decomposition step/K	Mass loss/%	Molecular mass found (calculated)	Eliminated species	Solid residue/%
$Cr_2O_2(CO)_2(salan)_2$	644.53	442 642	392–502 602–723	13.39 63.00	86.30 (86.00) 406.05 (406.00)	2CO, C ₂ H ₆ C ₁₃ H ₉ NO ₂ , C ₁₃ H ₉ NO	Cr ₂ O ₃ (23.61)
Mo ₂ O ₄ (salan) ₂	708.48	717 1090	670-740 1050-1240	30.00 70.00	212.54 (214.00) 495.50 (494.48) N	$2C_6H_4OCH_3$ $e_2O_4(salan-C_6H_4OCH_3)_2$	1
Table 3 Thermal analy	tical data for salicylid	ene-2-aminoanilir	ie (salphenH ₂) complexes				
Molecular formula	Molecular mass	DTG _{max} /K	Decomposition step/K	Mass loss/%	Molecular mass found	Eliminated species	Solid residue/%
[CrO ₂ (CO) ₂ (salphen)]	422.37	420 615 840 1086	340–483 490–733 740–933 940–1273	6.63 19.41 9.96 44.10	28.01 82.00 42.08 186.21	$\begin{array}{c} \text{CO}\\ \text{CO+}\text{C}_{2}\text{H}_{2}\text{N}_{2}\\ \text{C}_{3}\text{H}_{6}\\ \text{C}_{15}\text{H}_{6} \end{array}$	CrO ₂ (18.74)
[MoO(CO)(salphen)]	454.27	420 650 857 1171	353–488 490–733 773–1083 1090–1273	6.16 16.75 34.15 21.80	28.01 76.10 155.18 99.06	CO C ₆ H ₄ C ₁₁ H ₇ O C ₃ H ₃ +N ₂ +O ₂	Mo (21.13)
[MoO2(salphen)2]	758.71	402 506 892 1170	350–453 460–653 660–1083 1093–1268	4.22 17.06 49.34 16.28	32.00 129.45 374.37 123.50	$\begin{array}{c} O_2\\ C_5H_{10}+N_2+O_2\\ 2(C_{12}H_{13})+N_2+O_2\\ C_{11}H_4\end{array}$	Mo (13.10)

SOLIMAN et al.

J. Therm. Anal. Cal., 83, 2006

broad DTG peaks was found in the temperature range 340–733 K with a total mass loss of 26.04% (mass=109.98) which may be related to the partial decomposition of the complex through the removal of two carbonyl groups and part of the ligand as $C_2H_2N_2$. The last decomposition steps found in the temperature range 740–1273 K with a mass loss of 54.06% (mass=228.29) may be assigned for the removal of the rest of the ligand molecule leaving CrO_2 as the metallic residue.

[MoO(CO)(salphen)] complex

[MoO(CO)(salphen)] complex decomposed in four thermal decomposition steps within the whole temperature range 353–1273 K. The first two merged decomposition step with a relatively sharp DTG peak was found in the temperature range 353–733 K. The mass loss corresponded to this step was 22.91% (mass=104.11) which may be due to the removal of CO and C₆H₄ moieties. The third decomposition step was broaded over the temperature range 733–1083 K with a net mass loss of 34.15% (mass=155.18). This mass loss may be assigned for the decomposition of major parts of the ligands in the form of C₆H₄O and C₅H₃. The rest of the ligand (C₃H₃+O₂+N₂) was removed in the final step in the temperature range 1090–1273°C leaving Mo as the metallic residue.

[MoO₂(salphen)₂] complex

 $[MoO_2(salphen)_2]$ decomposed thermally in four steps within the temperature range 350-1268 K. The first two decomposition steps, found in the temperature range 350-653 K, with a mass loss of 21.28 (M=161.45) was assigned for partial decomposition of the ligand with the removal of two O₂ molecules in addition to one molecule N2 and C5H10 moiety. The third step found in the temperature range 660-1083 K with a mass loss of 49.34% (mass=374.37) may be assigned for further decomposition of the ligand moiety with the removal of two $C_{12}H_{13}$ and N_2+O_2 molecules (net mass of 374.40). The rest of the ligand moiety was removed in the last decomposition step in the temperature range 1093-1268 K with a mass loss of 16.28% (mass=123.50). The metallic residue remained at the end of decomposition was assigned as metallic Mo (13.10).

[Cr(CO)₄(biq)] complex

The complex decomposed in three steps, the first one occurred in the temperature range 295-367 K, with a mass loss of 6.65% (mass=22.95) which is consistent with the elimination of CO group. The second and third decomposition steps (498–752 K) with net mass

loss of 66.61% which corresponded to the elimination of the biquinoline moiety. The metallic residue (19.98%) remained after the decomposition was attributed to CrO_2 species.

[Mo(CO)₄(biq)] complex

The thermal decomposition of $[Mo(CO)_4(biq)]$ was reported [11]. The complex was further heated up to 1145 K. A new decomposition step appeared in the temperature range 982–1145 K. The mass losses for the five decomposition steps with the corresponding mass losses and the suggested species eliminated are tabulated in Table 4.

Kinetics of thermal decomposition

The calculated values of ΔE^* , A, ΔS^* , ΔH^* and ΔG^* for the decomposition steps are given in Tables 5–8.

 $[CrO_2(CO)_2(shaH_2)]$ complex showed considerable thermal stability which is reflected from the moderately high values of the activation energy averaged to 60.71 kJ mol⁻¹. On the other hand, [MoO(sha)] was found to be comparatively more stable which is reflected from the relatively higher activation energy ranging from 92.94–149.60 kJ mol⁻¹ (average values) which may be explained on the basis that molybdenum complex is less sterically hindered with no carbonyl moiety which often decomposed at lower temperatures compared with the organic moiety coordinated to the metal [15].

 $[CrO_2(CO)_2(salan)_2]$ showed a weak thermal stability which is reflected from the very low activation energy of the sum of the decomposition steps ranging from 37.10–40.73 kJ mol⁻¹ with a sum of 38.92 kJ mol⁻¹. On contrary, $[Mo_2O_4(salan)_2]$, showed high thermal stability which is reflected from the relatively very high energy of activation ranging from 257.80–381.99 kJ mol⁻¹ with a sum of 639.79 kJ mol⁻¹.

The complexes of salphen with chromium and molybdenum showed high thermal stability which is reflected from their energies of activation ranging from 16.97–79.73, 21.22–255.12, 21.93– 210.76 kJ mol⁻¹, with sums of 96.70, 324.12, 309.44 kJ mol⁻¹ for [Cr(CO)₂(salphen)], [MoO(salphen)] and [MoO₂(salphenH)₂], respectively.

 $[Cr(CO)_4(biq)]$ complex showed moderate thermal stability as reflected from the activation energy of the different decomposition steps ranging from 33.53 to 263.55 kJ mol⁻¹. [Mo(CO)_4(biq)] complex showed a wide variation of activation energies of the decomposition steps ranging from 36.59 to 606.09 kJ mol⁻¹.

In general and based on the sum of the energies of activation, the molybdenum complexes were found to be more stable than chromium complexes. The order of

Molecular formula	Molecular mas	ss I	DTG _{max} /K		Decomp tempera	osition ture/K	Mass lo	0/0/SS(Molecular 1 found	nass I	Bliminated	species	Solid res	idue/%
[Cr(CO)4(biq)]	420.35		323 589 714		295 298 661	367 559 752	6.6 66.6	55 51	27.95 280.0		CO $C_{20}H_{12}$	\mathbf{N}_2	CrO ₂ (1	9.98)
[Mo(CO)₄(biq)]	464.29		429 538 679 1069		400- 475- 599- 663- 982-	476 572 552 783 1145	6.1 33.6 12.7 20.5 27.6	0 10 22 22 22	28.0 128.19+28 56.03 95.67 128.24	.01	CO C9H6N+ 2CO Mo C9H6	c CO	I	
Table 5 The kinetic ar	ad thermodynamic c	lata of the	thermal de	composit	ions of (shaH2) comp	olexes							
	Decomposition	$\Delta E^*/kJ$	mol ⁻¹	R^2		A/s		Δ <i>S</i> */J K ⁻	-1 mol ⁻¹	$\Delta H^*/kJ$	mol ⁻¹	$\Delta G^*/kJ$	mol ⁻¹	
Comprex	temperature/K	CR	HM	CR	ΗM	CR	HM	CR	HM	CR	HM	CR	HM	Ĵ
$[CrO_2(CO)_2(shaH_2)]$	391 - 841	53.42	68.00	0.99	0.99	$3.63 \cdot 10^{2}$	$1.38.10^{4}$	-203.27	-173.01	47.44	62.02	193.59	186.42	0.30
[MoO(sha)]	490–700 720–820	81.60 137.63	104.28 161.57	$0.90 \\ 0.98$	0.85 0.98	$\frac{1.78{\cdot}10^9}{7.94{\cdot}10^{10}}$	$\frac{1.44\cdot10^{13}}{1.05\cdot10^{13}}$	-70.49 -42.51	$4.36 \\ -1.94$	78.19 132.37	100.88 157.31	107.09 159.28	99.09 157.54	$0.29 \\ 0.31$
Table 6 The kinetic ar	ad thermodynamic c	lata of the	thermal de	composit	ions of (salanH2) cor	nplexes							
Commlay	Decomposition	$\Delta E^*/k$ J	mol ⁻¹	R^2		A/s	2-1	$\Delta S^*/J \text{ K}$	-1 mol ⁻¹	$\Delta H^*/\mathrm{kJ}$	mol ⁻¹	$\Delta G^*/\mathrm{kJ}$	mol ⁻¹	Ċ
COMPRES	temperature/K	CR	ΗM	CR	НМ	CR	HM	CR	HM	CR	ΗM	CR	ΗM	Š
$[CrO_2(CO)_2(salan)_2]$	392–520 602–723	32.67 4.43	35.44 5.29	$0.99 \\ 0.98$	0.98 0.98	$5.77 \cdot 10^2$ $2.13 \cdot 10^4$	$7.38.10^{3}$ $2.41.10^{5}$	-194.82 -168.17	-173.63 -143.36	29.22 1.01	32.00 5.90	109.88 212.82	$103.88 \\ 100.90$	$0.23 \\ 0.26$
[Mo ₂ O ₄ (salan) ₂]	660–744 1050–1240	246.10 372.99	269.50 390.56	0.98 0.97	0.99 0.98	$\frac{4.85 \cdot 10^{17}}{6.77 \cdot 10^{16}}$	$\frac{4.60{\cdot}10^{19}}{2.15{\cdot}10^{18}}$	86.48 66.55	124.37 95.28	240.20 363.94	263.60 381.51	178.89 291.61	175.42 277.75	0.25 0.29

Table 4 Thermal analytical data for biquinoline (biq) complexes

Table 7 The kinetic and t	hermodynamic dat	a of the th	termal deco	omposit	ions of (s	alphenH ₂) con	nplexes							
Common	Decomposition	$\Delta E^*/k$]	J mol ⁻¹	R	5	A/s^{-}	-	$\Delta S^*/J \mathrm{K}^{-1}$	mol ⁻¹	$\Delta H^*/\mathrm{kJ}$	mol ⁻¹	$\Delta G^*/\mathrm{k}$	J mol ⁻¹	
COMPTER	temperature/K	CR	ΗM	CR	НМ	CR	HM	CR	ΗM	CR	ΗM	CR	НМ	ŝ
[Cr(CO) ₂ (salphenH ₂)]	340–733 740–1273	11.81 70.51	22.13 88.95	0.99	0.99	0.12 54.41	5.34 1722	268 222	-237 -193	6.70 61.47	17.02 79.92	$172.01 \\ 303.07$	162.80 290.32	$0.29 \\ 0.28$
[MoO(salphenH ₂)]	353–733 773–1083 1090–1273	16.15 39.80 245.8	26.28 55.76 264.44	$0.99 \\ 0.96 \\ 0.99 $	$\begin{array}{c} 0.99\\ 0.96\\ 0.99\end{array}$	$1.70 \\ 5.20 \\ 4.9.10^9$	$112.70 \\ 228 \\ 1.45.10^{11}$	-244 -240 -70	209 208 42	12.22 32.34 236.1	22.34 48.63 254.71	127.81 238.37 318.88	121.44 227.37 304.61	$\begin{array}{c} 0.29 \\ 0.33 \\ 0.32 \end{array}$
[MoO ₂ (salphenH) ₂]	350–653 660–1083 1093–1268	17.33 70.13 261.4	26.53 83.37 160.12	$0.99 \\ 0.99 \\ 0.97$	$\begin{array}{c} 0.98 \\ 0.98 \\ 0.96 \end{array}$	$\frac{1.39}{3.5 \cdot 10^2}$ 2.61.10 ¹⁰	$\frac{68}{9.3 \cdot 10^4} \\ 5.46 \cdot 10^8$	-246 -205 -57	-214 -178 -87	13.12 62.69 251.7	22.32 76.00 152.68	137.89 246.27 318.28	130.72 235.14 230.27	$\begin{array}{c} 0.30 \\ 0.27 \\ 0.31 \end{array}$
Table 8 The kinetic and t	hermodynamic dat	a of the th	termal deco	omposit	ions of (t	iq) complexes								
Comular	Decomposition	$\Delta E^*/\mathrm{kJ}$	J mol ⁻¹	R	5	A/s^{-}	Ŀ	$\Delta S^*/J \mathrm{K}^{-1}$	mol ⁻¹	$\Delta H^*/\mathrm{kJ}$	mol ⁻¹	$\Delta G^*/\mathrm{k}$	J mol ⁻¹	
COMPTEX	temperature/K	CR	HM	CR	НМ	CR	HM	CR	ΗM	CR	HM	CR	НМ	ر د
[Cr(CO)4(biq)]	295–367 498–659 661–752	33.53 131.12 253.12	37.15 162.34 263.55	$\begin{array}{c} 0.91 \\ 0.95 \\ 0.92 \end{array}$	$\begin{array}{c} 0.91 \\ 0.94 \\ 0.91 \end{array}$	$\begin{array}{c} 8.22\cdot10^2\\ 1.34\cdot10^{14}\\ 1.89\cdot10^{16}\end{array}$	$\begin{array}{c} 4.30{\cdot}10^{5}\\ 1.41{\cdot}10^{14}\\ 1.18{\cdot}10^{19}\end{array}$	-190 -38 59	$\begin{array}{c} -138\\ 20\\ 113\end{array}$	30.84 126.22 247.18	34.45 157.45 257.61	92.15 148.36 204.72	78.92 145.50 176.92	$\begin{array}{c} 0.31 \\ 0.29 \\ 0.31 \end{array}$
[Mo(CO)₄(biq)]	400–476 475–572 599–652 663–783 982–1145	36.59 88.32 174.17 51.54 538.42	38.76 100.31 177.19 58.11 606.09	$\begin{array}{c} 0.97\\ 0.99\\ 0.88\\ 0.95\\ 0.95\\ 0.99\end{array}$	0.97 0.98 0.96 0.96	$\begin{array}{c} 0.96{\cdot}10^2\\ 1.77{\cdot}10^7\\ 1.45{\cdot}10^1\\ 5.15{\cdot}10^3\\ 5.15{\cdot}10^3\\ 9.31{\cdot}10^{25}\end{array}$	$\begin{array}{c} 1.33\cdot10^{4}\\ 2.29\cdot10^{9}\\ 8.54\cdot10^{14}\\ 3.15\cdot10^{3}\\ 2.64\cdot10^{29}\end{array}$	-211 -111 1.09 -219 241	$-169 \\ -70 \\ 35 \\ -185 \\ 308$	33.03 83.84 169.10 45.73 529.53	35.20 95.83 172.12 52.30 597.21	123.20 143.59 168.44 199.00 271.20	107.71 133.85 150.78 181.66 268.21	0.28 0.32 0.29 0.29

CHROMIUM AND MOLYBDENUM COMPLEXES

Ξ.
Ш
7
ż
9
2,
1
-
Ċ
7
Ľ
Ч.
۰.
۲,
2
è
4
••
۲,
۰.
- 2
- 5
÷
C
è
2
_0
7
- 1
-
<u>ر</u>
2
- 5
- 5
Ċ
2
4
+
2
4
+
4
1
2
7
٠,
۰.
• •
- 5
÷
C
2
- 5
_
7
2
2
- 2
÷
- 2
Q
4
4
_
7
ė
- 5
0
. 5
Ŧ
- 7
2
- 5
• †
~
-
0
ē
F
F
÷.
r
•
¢
4

 $CR-Coats-Redfern method; HM-Horowitz-Metzger method; R^2-correlation coefficient of the Arrhenius plots$

thermal stability according to the coordinated ligands was found to be biq>salphenH₂>salanH₂>shaH₂. This can be explained on the basis that biq (NN donor) is less sterically hindered than the other complexes. On the other hand salphenH₂ is strong NNOO tetradentate ligand compared with the NOO tridentate salanH₂ and shaH₂. This trend is found to be biq>salphenH₂ >shaH₂> salanH₂ for chromium complexes.

The entropy change, ΔS^* , for the formation of the most of the activated complexes from the starting reactants, is in most cases of negative values. The negative sign of the ΔS^* suggests that the degree of structural 'complexity' (arrangement, 'organization') of the activated complexes was lower than that of the starting reactants and the decomposition reactions are slow reactions [16].

The values of C_s for the thermal decomposition of the complexes are in the range 0.23–0.33 which indicates that the decomposition follows first order kinetics [12, 14].

References

- J. P. Collman and L. S. Hegedűs, Principles and Application of Organotransition Metal Chemistry, University Science Book, California 1980.
- 2 T. Katsuki, Coord. Chem. Rev., 140 (1995) 189.
- 3 R. D. Jones, D. A. Summerville and F. Basolo, Chem. Rev., 79 (1979) 139.

- 4 G. Henrici-Olive and S. Olive, 'The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide', Springer, Berlin 1984, p. 152.
- 5 H. Dugas and C. Penney, 'Bioorganic Chemistry', Springer, New York 1981, p. 435.
- 6 J. D. Margerum and L. J. Miller, 'Photochromism', Interscience, Wiley, (1971), p. 569.
- 7 W. J. Sawodny and M. Riederer, Angew. Chem., Int. Edn. Engl., 16 (1977) 859.
- 8 S. M. El-Medani, J. Coord. Chem., 57 (2004) 115.
- 9 O. A. M. Ali, M. H. Khalil, G. M. Attia and R. M. Ramadan, Spectroscopy Letters, 36 (2003) 71.
- 10 S. M. El-Medani, J. Coord. Chem., 57 (2004) 115.
- 11 A. O. Youssef, M. H. Khalil, R. M. Ramdan and A. A. Soliman, Trans. Met. Chem., 28 (2003) 331.
- 12 H. H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.
- 13 A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.
- 14 M. Nath and P. Arora, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 1523.
- 15 A. A. Soliman, S. A. Ali, M. M. H. Khalil and R. M. Ramadan, Thermochim. Acta, 359 (2000) 37.
- 16 L. T. Valaev and G. G. Gospodinov, Thermochim. Acta, 370 (2001) 15.

Received: March 20, 2005 Accepted: August 30, 2005

DOI: 10.1007/s10973-005-7009-9